It tells the story firstly of events on the Deepwater Horizon rig in the days leading up to the catastrophic blowout, and then of the efforts by BP and the US government to cap the well as it gushed approximately 50,000 barrels of oil every day.
First and foremost, it gives an insight into the complicated engineering procedures on a rig - essentially incomprehensible to the average man on the street. For example:
This story had its own interesting lexicon, a language crafted by men who use tools. Offshore drilling is rough stuff, hard-edged, coarse [...] What they do is complex, difficult and dangerous. They drill holes in the pressurized Earth. They extract crude. They pump mud and cement, and handle gear weighing tens of thousands of pounds on a rig that weighs millions [...] And so even the language is masculine, the words often short, blunt, monosyllabic. Spud. Hot stab. Top kill. Junk shot. Dump box. Choke line. Kill line. Ram. Ram block. Ram packer. Side packer. Stack. Valve. Tick. Pod. Borehole. Bottom hole. Dry hole. Drill pipe. Coning. Cylinder gauge. Cavity. Rat head. Stopcocking. Torque tube....More importantly, it shows how industrial accidents can occur. In complex systems, events can have unintended, unforeseen consequences that can turn small mishaps into massive disasters:
The Macondo well blowout was a classic industrial accident, a sequence of tightly coupled events in which no single action could have caused the disaster. Some of the mistakes are screamingly obvious in retrospect, but at the critical moments, decisions were fogged by uncertainty.This has wider implications than a single accident in the Gulf of Mexico:
The Deepwater Horizon tragedy is a reminder of how little most of us know about modern technology. We don't know how anything works [...] The irony is that we're inhabitants of a planet that is becoming increasingly engineered. The engineers are brilliant and creative, and most of us have little appreciation for what they do, so deftly is their handiwork woven into our daily lives.Our engineered planet poses a challenge for us:
We need to remember that sometimes bad things happen to complex systems, that gremlins roam the earth. Things go wrong. Count on it. The engineered planet challenges all of us to be a little bit smarter, to pay more attention. We need to learn the jargon, understand the risks [...] Even if there's not another deepwater blowout anytime soon, there will be something that happens, something awful and unexpected, that involves the failure of a complex technology. It could happen in outer space, at the bottom of the sea, in a nuclear power plant, on the electrical grid, or somewhere in the computer infrastructure that networks the planet [...] There will be more black plumes. There will be other fires on the horizon. Low-probability, high consequence events are made all the more devastating, potentially, by the scale and sophistication of modern technology [...] As we go down this technological path, we will count on complex systems to work correctly. We will assume that someone smart is in charge, looking over our world, protecting us [...] Here's the thing: Usually the technological magic works. Usually nothing terrible happens. Usually.This is not a Luddite call. New technology is vital to human progress. Any call to return to some sort of agrarian free-living paradise is to forget how cruel and unpleasant life in these societies used to be. Nevertheless, we have to treat our novel systems with the respect they deserve:
As we grope our way forward, we can develop a few rules. Such as: When doing something risky, remember that risk build like plaque, Make sure your backup plan really is in back and won't get blown up out front along with your plan A. Remember that low probability, high consequence events become more likely given enough time and opportunity [...] Measure your misery. Don't shy away from knowing precisely how bad you're screwed [...] Keep the fixers away from the talkers. Don't expose the engineers to any political shenanigans, media madness or public outrage [...] And finally, the most important lesson: Keep your wits about you. It is extraordinarily unlikely that the disaster you are dealing with is qualitatively worse than the many calamities that human beings have survived to this point. In fact, it's probably not as difficult as any number of challenges that people have overcome, from wars to famines to pestilence to floods to storms to earthquakes. People survive, rebuild, thrive. The strange thing about Armageddon is that it never actually happens. So don't panic. The problem will be solved. May not be pretty, but it'll get done.I think Achenbach's take on this can be readily applied to shale gas extraction: a complex engineered system, where usually the technological magic usually works just fine, but there is always the possibility of a Black Swan event. It is the duty of engineers to properly respect the system they have constructed, keeping their wits about them to do their utmost to minimise risks, to prevent risks building up like plaque. It is the responsibility of the public to learn the jargon and understand the processes, while at the same time not turning engineering issues into political shenanigans, media madness and public outrage. This doesn't lead to sensible decision making.
Anyway, I thought it was a great read. My better half was very disappointed as I was lost to her, deep in the pages of the book, through much of Christmas Day evening and Boxing Day. I'd recommend it not just to people interested in learning more detail about the BP disaster, but to learn much more about how we drill for oil out at sea most of the rest of the time when things aren't going wrong, and to gain an appreciation of the scale of complex engineering that is required simply to put petrol in your car. Read it, and then remember it next time you fill up.
Finally, one point worth remembering, from all the nerds out there:
In crunch time, call in the nerds as well as the cowboys.
No comments:
Post a Comment